新しい挑戦とささやかな体験(プログラミング独学独習者が短期間で音声AIチャットボットモデルを作れた理由)

私も昨今のAIの進化に驚いている者の一人です。

 

ですが、ただ驚くだけでは、そこに何らの発展性もないでしょう。 

 

そこでAIの学習のしくみを知ることで、それを人間の能力成長に結びつけられないかと思い、
一念発起( ※ただし、後述するようにモチベ-ションは非常に低い状態 )し
新しい挑戦と言いますかPythonのプログラミングを2023年2月くらいから独学で学び始めました。

 

 

機械学習分野は、時代の流れから、

 

「 プラスアルファで取組んで社会人として必要最低限のスキルは身につけたほうがいいよね!」
と思ったというのもあります。

 

7つの習慣的に言えば、緊急ではないが重要なことという位置づけでオレンジ枠の活動の一環として取り組んだということになります。
以下の時間管理のマトリクスで活動を整理するのは質を高めるのに、古典的で平凡な手法ですが有名ですよね。

 

7つの習慣-時間管理のマトリクス2

 

とは言え取組んだのは、< ぶっちゃけると >もう一つ別の裏の理由もありまして

 

不特定多数が閲覧できる形で、サイトを公開してますと、当然いろんな方がいますから

 

なかには
「 心身統一法を実践しても、、あるいは能力開発などで速読スキル等を身につけても、
そんなのは全く役に立たない 」という失礼でネガティブな匿名メ−ルが、
相当にレアですけど、たま---に来ることがあるわけです。(実際の言葉は、こういうのではないです。
某巨大掲示板に匿名で垂れ流してるような相当に過激なメ-ルです。
オブラ−トに包んでいます。既に削除済みですけど )

 

なので、

 

「 そんなことないかもしれないよ!役に立ってるよ! 」というのを、

 

誰の眼にも見える形で証明する(示す)のに、手っ取り早いと当時思ったので取り組んだとこもあります。

 

ちなみに、「 役に立たないとかは、ないと思うんですが・・」という論調の記事もここに書いておきました。(;^_^A

 

尤も、日々を幸福に感じる機会を増やして逞しく生きることに関心がない方にとっては、
役に立たないというのは正論かもしれないですが・・

 

 

 

私にとっては、こっち( 中傷匿名メ-ルに怒り心頭 )のほうが、動機としては強かったのかもしれません。
珍しく何年かぶりにブチギレたわけですし、どう贔屓目に見ても高尚な動機じゃないですね。

 

本音をぶっちゃけると「こんにゃろ!何言ってんの」。(# ゚Д゚)というブチギレと、
やさぐれた反骨の気持ちのほうが動機として強かったかもしれない。(って言いますか、強かった)

 

三勿三行( 怒らず、恐れず、悲しまずの三勿と正直、親切、愉快の三行 )を曲がりなりにも心がけてはいるし
大概のことは適当に受け流すけど、心身統一道(法)の悪口は、流石に黙ってられない。

 

こういうのも、私自身、以前と相当に変わったとこでしょう。

 

 

恐らく以前だったら、こういう悪口に曝されたら、( そういうネガティブな刺激を、まともに受けて)
どんどん、ネガティブスパイラルにはまって、しょ気て投げ出していたかもしれません。

 

とりあえず、今は神経反射の調節法が、どこがどういう事もなく習いになってるようで

 

匿名の失礼な中傷メ-ルに、ただ怒って、ブチ切れて憎んだり恨んだりしても三文の得にもならない。
何の芸も生産性もないと思い直し切り替えて、、、

 

 

意志の力で怒りを闘志に変えて
向上発展方向に振り向けたということになるのかもしれません。

 

不徳にもブチ切れてしまいましたが別に中傷メ-ルを送ってきた方を恨んでも憎んでもないし
誰も傷つけず、結果的に生産性や創造性の向上につなげたので健全なブチ切れだったと思いたいですね。

 

それに、中傷メ-ルを送ってきた方が、日々が充実して上手く行ってるならそれでいいと思うので。。

 

 

 

 

私のやさぐれた実践動機はともかく

 

2023年2月くらいだったかにHello World!という文字をpythonでprint出力できることを知って
4月〜7月末にかけて、少しずつ追加しながら、この記事を執筆したんですが

 

生成AIが、どんどん進化しているので

 

心身統一法凄いよ!可能性拡がるよ!の証明になるかどうか、
もはや自信が、殆どなくなってる( と言いますか、もう証明にならないかもと危惧してる )のが誠に残念ですけど、、

 

とは言え、以下に述べるようなコ-ディングスキルを、ごく短期間で身に着け運用できるようになるのは、
全くの初心者で、独学だったら、かする程度には難しいのではないでしょうか?

 

いずれにしろ学生だけでなく社会人(とりわけ経営者や、この分野の担当者)で
生産性及び効率性向上のために、省力化や潜在的なデ-タ発見、活用などへの必要性から
プラスアルファで機械学習やpythonのプログラミングに取組んで、そのシステムを学び
現在の実務に活かそうとしている方も少しずつ増えていると聞きます。

 

それに、こういうのに関心が全くない方も、これまでの自己啓発書なんかの常識と違うことを書いていますから
機械学習関係なく、潜在意識の薫習ということについて、別の意味で新しい視点と言いますか、ちょっとは参考になるかもしれません。

 

実際、私は、こういうのに取り組む際に、実在意識におけるモチベ-ションが高かったかというと、高くありません。

 

そんな不退転のギリギリの決意なんてのもありません。

 

 

「 出来れば、やりたくはないけどな・・・ 」というとこから出発しています。

 

だから、一般的な成功指南書とは違うこと書いてますね。(;^_^A
成功指南書では、やる気と決意が大事とか書いてますから。

 

ちなみにファ-ストステップ(最初の2〜3週間)で、
当時、参考にしたのは以下の書籍です。図書館なども活用し書店でも立ち読みで速読スキルで大量入力しています。
<結局、以下写真の2冊以外で、これといった本が大量立ち読みした中になかったので(以下の2冊以外は)買いませんでした(;^_^A>

 

こういった機械学習のコ-ディングに慣れるのにト-タルで1万円くらいかかっています。
( chat GPT plus 月額20ドルの費用が、3カ月で、ある程度まで習得する中で、かかったコストとして大きなウェイトを占めた形です )
Pythonのリファレンスガイド

 

これらのテキストで学ぶ際に、これまで培ってきた一連の能力開発法や
鏡を用いて言い聞かす信念強化暗示技法、クンバハカ、視覚心身統一法などをフル活用させ合間を見つけて学びました。

 

ちなみに、上記2冊は、入門書として学んで、その後3〜4ヶ月かけて十冊近くの専門書や専門サイト(主に英語圏)の必要な箇所を拾って学びました。
他にもネットに公開されている関連記事に支えられて学べたと思います。(図書館で3〜4冊借りて、他は数冊の英語のフリ-の機械学習のコ-ディングが書かれたPDFで学びました )

 

機械学習関連の記事を書き、まとめておられる方は、わかりやすい記事執筆に努めている方が多いということもあって1〜2分で概要を把握し、目的に合う、合わないというのを判別したら次。みたいにしたペ-ジは、数えきれないほどあります。

 

とは言え、実在意識におけるモチベ-ションは、何度も書きますが、初期状態では、低かったです。
それに速読スキルも、私の場合、大して伸びてないと思います。

 

フォトリ-ディングやSRS速読等にもずいぶん以前に取組んで、やり抜く根が出た御蔭で、なんとなく出来るようになった気がしますが

 

結局、今は自前で速読法をカスタマイズし構築しています。

 

自前開発したものが、効果があるか、あまりよくわかりません。やれることが増えてるとこを見ると恐らく役には立ってるとは思うのですが・・・

 

 

 

ただし自己分析したら、恐らくですが、やはり心身統一法の実践で続ける才能を作ることが出来て、
恐らくですけど、基本ステ-タスを上げ( こういうことを知らない方から見たら )
不公平な力を獲得できたことが、貢献度として最も大きいと思っています。

 

 

というのも

 

 

発展向上に向けて習慣統御し心身統一行法を丁寧に重続実践すると、
生活するための秘めた生存力(生命力)の振動数が高まっていくと言われています。

 

 

そうしたら、どこがどうという事もなく元気になり、その派生として

 

体力、胆力、判断力、断行力、精神精力(克己の粘り強さ)、能力の底上げがじわじわと成されると天風哲人は述べています。

 

よって

 

 

単純に、6つの力の一派生に過ぎない´ 能力 ´というのにフォ-カスしても、
こういうことを知らない方で、同じ知力や脳力であっても、
知って実践してる方のほうがアンフェアな力を得て
基本ステ-タスが上がる可能性がある

 

そうしたら、必然的に環境への適応力も含めて色んなことに可能性が拡がるということになるのでしょう。

 

 

 

ちょっと切ない話になるのですが、情けない自分をなんとかしたくて自己啓発に取り組んでいた頃

 

 

「 自己の限界をこえる、なんちゃら 」みたいな本のタイトルに惹かれて、
そういう系統のものを読み漁った経験が、実はあります。

 

で、そういうのを読んだって、気が付いたらドロップアウト。
箸にも棒にもかからず、っていう挫折体験もあるんです。

 

にもかかわらず、

 

そう言う、´ふれこみ´を一切してない口述書を丁寧に実践したら、

 

 

以前より表面の奥の力が薫習され無意識のリミッタ−が解除され
自然に基本ステ-タスが上がって学習曲線自体の底上げがされていったのかもしれません。

 

 

 

そう考えると、いろいろ複雑な心境になってしまいますね。

 

遊興などには目もくれず、あれだけ懸命にやって挫折しまくっていた頃の取り組みは何だったのかと、、、
ほんと、知らず実践してない人から見たらアンフェアだと思います。

 

あとは

 

継続実践以前より否定的連想も肯定的連想も超えたゾ−ン( 空 )に入りやすくなっていたことも大きかったのかもしれません。

 

心身統一法の実践継続を生活のベ-スにすることで、

 

以前に比べて、(自分比較で)あと一歩の粘りと言いますか、根も蘇ったというのは大きいのかもしれない。

 

それに、とにかく、やってりゃ、なんとかなる。

 

泳げないなら、グダグダ考え悩む前に、水の中に入ってから考えりゃいい、、

 

という大らかさも、こういうのを短期間で習得するのに、よい考えだったのかもしれません。

 

あとは、社会人になったら、どんな学習法を実行したってよいわけで

 

基礎から積み上げるような従来のやり方ではなく

 

俯瞰しながら自身にとって、面倒そうだが、ちょっとは面白そうなこと、興味を感じることからトップダウン式に取り組んで
必要なことだけにフォ−カスし手を動かしながら小さく学ぶ、ちょいとでも出来たら、大げさに自身の取り組みを褒めてやる

 

重ねて書きますが、とっかかりのモチベ-ションは低いです。

 

そういう中で、

 

 

「 仮にも最高峰の天風哲人の心身統一法を源流、直伝の口述書経由で知って
能力開発やって教えてる人間が、この程度のことが出来ないでどうするの、、
いや一般常識的に考えて出来ないと非常にまずいでしょ 」

 

みたいなノリで、

 

ただし、初期状態は、先にも述べたように、小さな成果や自身の取り組みそのものを大きく誇張し褒め自身の脳を励まし

 

ある程度、出来るようになってからは

 

上記のようなことを言い聞かせて、なだめすかしまくって騙し騙しやってたわけです。(;^_^A

 

言葉がよくないですが、これは一種の自己洗脳です。

 

※案外、上記が自身にとって脳を騙し洗脳し潜在意識を鼓舞する暗黙のアファメ−ションになってるのかもしれないですけど、、、
別に誰に迷惑かけるわけでもなく、当の本人にとって生産性も上がり結果が付いてくる洗脳?なので、別によいのではないでしょうか?

 

 

そういう心理操作かつ意志力で、こういう不愉快なことを、少しでも愉快に出来るよう方向付けしてやっていったら

 

ある心理的一点を突破したら、学ぶのが少しずつ楽しくなっていきプログラミングを含めた機械学習のスキル習得がぐんぐん加速していきました。

 

具体的には、先の写真の入門編の黄色の本や右のデ-タサイエンティスト育成講座の本を、パラパラめくって、ざっと読んで、

 

Hello!Worldをprint表示できることに、おお!と喜んだあとは

 

黄色の入門編は、性懲りもなく一番最終の章から、右の本も、ほんと、とても面倒くさそうな中で
自身にとって、ややこしそうだが、少しは興味を感じて面白そうだと思った後半も後半の章の決定木やランダムフォレスト、
勾配ブースティング等の章から、途中をすっ飛ばして、小さく始めたということ。

 

 

そうして、モチベ-ションも相当に低い中で、
私のお道具の脳が、今までやったこともないことに取り組んでるもんだから、
危険信号出して、アレルギ−反応をバリバリ出すのを
フ−ンと等閑視しながら、悪戦苦闘し、ちょっとでも出来たらお道具の脳を褒める等、手を動かし取組んでいくと、、

 

何となく構造や流れが理解できるようになり

 

少し理解出来たら、

 

思いっきり、すっ飛ばした基礎を、後で繋げて基礎のコ-ドや技術が、
どういうふうに後半の機械学習の、より実践に近い章に繋がっているか、
それを俯瞰しながら埋めていく、、、というようなやり方です。

 

尤も、こんな非常識な学習法をやってたら高校時代とかだったら
先生に怒られてるでしょうが、

 

縛られる必要もない。社会人なのだから、別にどんな学習法を採用したっていいでしょう。

 

 

 

 

ただし、心身統一法や柔軟な学習法だけで、スキル獲得の加速が出来たのではないでしょう。

 

とりわけ独学での機械学習(およびプログラミング)の学習速度を十倍以上に加速させたのは、、、、、

 

 

冷静に考えて、(心身統一法をベ-スにした自己訓練以外では)どう考えても
以下のchat GPTの力が大きいと自己分析しています。

 

OpenAI ChatGPT

 

機械学習のプログラミングスキルの習得に取組み始めて、悪戦苦闘していた1カ月過ぎた頃に、chatGPTの存在を知ったのですが

 

そのデバッグに大いに助けられ、先のテキストの章末の練習問題や総合課題では、実務に使えそうもないし、さほど難しくも感じなくなって
物足りなく感じるようになりました。( これはGPT4の御蔭でしょう )

 

それで、更なるスキル向上のためにと参加したタイタニックの生存予測モデルの精度を競うkaggleのコンペにも挑戦しようと思い
煩雑な前処理の見直しやチューニング設定の見直しもGPTとの協業で行うことで、割に容易にできるようになりました。

 

ChatGPTの力を借りて手を動かしながら楽しく学んでいけばノンプログラマ−でpyhon入門者レベルでも、相当に機械学習のコ-ディングなどの実践的な学習が進み自身もレベルアップしていきます。

 

私みたいに、「 あまり、やりたくない。面倒くさそう。もう、しかたないからやる 」というようなモチベ-ションが低いとこから出発するのではなく

 

意欲が元々あって、Python等を習っている下地がある方なら
冒頭に紹介したデ-タサイエンティスト育成講座の総合問題なども、
独学独習であっても、ChatGPTとのchatを重ねながら取り組めば

 

理解も急速に進んで難しいと思っていたコ-ディングの問題も解き終えてしまう方もいるかもしれません。

 

 

chat GPT3.5(4)を巧く使えば、私のように先のテキストを解いて練習するだけでは物足りなくなる方もいて、より実務に近くて、
より高度なkaggleのコンペにも取り組んだり
あるいは、より高度なLLMの専門書も学んで徐々にスキルを上げていくことで

 

この記事に書いてるくらいの機械学習分野のコ-ディングのスキルレベルなら独学で3か月かからず習得でき、
ここに書いている以上のことが出来るようになってしまう方も出てくるのではないかと考えます。

 

プログラミングなどを高校や大学などの学校教育で学び始めている若い方なら教えてもらえるのですから
独学独習より、修得難易度は低くChat GPTをツ-ルとして巧く使えば修得は、さらに早くなるでしょう。

 

 

では、なぜ、そこまで言えるかというと、この記事を書いている私が良い例です。

 

私は、これまでの人生で一度もプログラミングなど学んだことも触れたこともなく、そういうのとは無縁だった人間です。

 

しかも独学・独習で取り組んでいます。
尤も検定統計やクロス集計などのデ-タ分析の基本的な考え方は
ビジネススキルとして、既に身に付けてはいましたけどpythonのプログラミングや機械学習は人生初めての取り組みです。

 

その際にChatGPTを知らないで取り組んでいた時期も1か月位あります。

 

その時の学習の理解度やスキルの向上とGPTを知って活用して以降では機械学習の知識やコ−ディングのスキル習得が加速しましたから。

 

どんなふうにやったかと申しますと、、人それぞれとは思いますが、、あくまで私の場合は
上記で写真で紹介したデ-タサイエンティスト育成講座の本を3週間程度で、総合問題の課題を含めて
トップダウン式のパラシュ-ト法で、いつものやり方でサンドイッチ式に目標を挟み込んで取組みました。
ちょっとでも出来たら大袈裟に自身を褒める、メインサイトのSTEP1〜5に書いている、いつものやり方です。

 

そして必要な箇所だけ学び終えた後に物足りないのでkaggleのコンペに挑戦しようと決めて同じやり方で取り組んだところ
タイタニックの生存者予測精度を競うスコアがどんどん向上していきました。

 

ChatGPTに質問を繰り返し乍ら取り組んでいったのですが
気が付いた時にはスコア・ランクが急激に上がりkaggleコンペで上位5%に入ることができていました。

 

精度向上をするためのデ−タの前処理や他のモデルとのアンサンブル学習などに取り組み始めて1週間かかっていなかったと思います。

 

これが出来たのは、心を方向付けし粘り強く為す実力とも言うべき意志力や信念が渙発されて、
ごちゃごちゃとした雑念に振り回されなくなって学習が加速できたのと
打ち込む力が付いたこと。

 

さらにはChatGPTのコ−ド提案力とデバッグ力があったからです。

 

 

 

とりわけChatGPTの貢献というのが大きいでしょう。

 

この記事に書いているレベルなら、何とかなってしまうというのがchatGPTの凄みではないかと思います。

 

一例を挙げるなら「タイタニックの生存予測のKAGGLEコンペ」
これに出した際の試行錯誤のコードが、例えば以下のようなものです。

 

タイタニックの生存予測モデルのコード

 

これもChatGPTの提案をこちらで組み替えたりデバッグを繰り返して構築したものです。
(GPT3.5や有料のGPT4とchatを重ね質問を繰り返すうちに自然にpythonのコ-ディングや機械学習の専門用語に慣れていき難しいコ-ドを理解し読めるようになっていきました。
尤も、、、高精度の予測モデルを作るには、いろんなモデルの試行錯誤とデータの前処理が必要で、これが案外煩雑なのは違いありませんけど)

 

モチベ-ションは、相当に低かったにもかかわらず、、例えば以下のようなコ−ディングが(気が付いたら)可能になっていました。

 

なお、これだってGPTが提案し生成したコ−ドを、目的意識を明確にし、
こちらで調整しデバッグを繰り返して組み替えたりしただけですから、
これが私だけのコ−ディングの力かというと、決して、そうではないと断言できます。
CNNモデルの訓練と評価のコード

 

上記のコードを、簡単に解説すると、これは病気のcassavaの葉の画像分類(kaggleのコンペで出されたもの)を行う際に深層学習モデルを構築した時のものでcolabの畳み込みとプールの可視化のペ−ジを参考にしています。

 

cassavaの葉の画像分類のKaggleのコンペは、すでに2年前に終了しているようですが、
機械学習分野のコンピュータビジョン関連について、基本のスキルを高める為に取り組んだ時のものです。

 

以下は、cassavaの葉(や茎)の画像です。こういうのが21367枚あります。農家の方らのクラウドソ−シングによる調査で集められたもので
ラベル付き画像データになります。
cassavaの葉のラベリング

 

コンペの課題は、キャッサバ(cassava)の葉や茎の画像を4つの病気のカテゴリおよび健康な葉を加えた合計5つのカテゴリに、出来るだけ高精度に分類することです。キャッサバはアフリカの主要な炭水化物源で、厳しい環境でも育つことができます。そのため、食糧問題の解決の糸口になる重要な作物です。

 

この作物は食べ物としてだけでなく、エネルギー資源としても使われ、タピオカやキャッサバ粉に加工したり、エタノールやバイオディーゼルといった燃料を作ることも可能です。多くのアフリカ人の主食であり、その経済にも大きな影響を与えています。

 

この作物の分類の精度が上がれば農家の方はウィルスなどの病気にかかったcassavaの植物を迅速に特定し早く処置することで大幅な減収、減益などのダメージを受ける前に作物を救うことができるので、縁の下の<陰ながらの>地域貢献にもなると言われています。

 

 

この画像分類は、先に挙げたKAGGLEコンペのTitanicの生存予測モデルを構築するより、難易度が高かったですが
精度向上のために様々な前処理やモデルの模索、構築をしていく際にニュ−ラルネットワ−クモデル(CNN)の各層における処理も精度向上の模索の一環で確認しました。

 

その際に、この目的を達成するコ−ディングについてこのペ−ジを参考にしたのは勿論ですけど
試行錯誤の実験をするためにGPT4(3.5)のデバッグ能力の力を大いに借りて作りました。
(と言いますか、GPT4(3.5)のデバッグ能力がなければ私には到底できなかったでしょう)

 

例えば以下の画像は、cassavaの葉の疫学分類を機械学習モデルが、処理していく際に、その中間層である畳み込み層などの出力を視覚化したもので、出力結果の一部です。

 

先のコ−ドは、訓練用のデータセットから取得した最初の3つの画像を表示するコ−ドが含まれており、それぞれのフィルタが捉えた特徴(エッジ検出)や色の勾配などの機械モデルが特長検出で捉えた学習過程を視覚化することができます。
CNNモデルの訓練と視覚化

 

これは、例えば以下のように設定したCNNモデルが各層で学習している特徴を私たちが理解するために行うもので機械モデルを改善していくときの有力な手がかりになります。
各層が画像のどの部分に焦点を当て、それぞれのフィルタが、どのような特徴を捉えているのか知ることが出来ます。

 

どんどん抽象化されているのが、上記のカラ−マップを見ることで読者にも、わかっていただけると思います。
CNNモデル
ただし、これだって、Lab4-Using-Convolutions.ipynbのペ−ジなどをご存じの方は、当たり前の基本的な事をやっているに過ぎないと思う方もいるかもしれません。

 

機械学習に詳しい方にとっては、これは基本中の基本でしょう。
そのとおり、ど正論だと思います。

 

とは言えCNNモデルに応用し、python2〜3か月学んだ程度で実装するのはChatGPTのデバッグの力や提案があって、自身も少しずつレベルアップしていかなければ到底無理だったでしょう。

 

なおcassavaの葉の画像分類については、精度向上に向けてchatGPTの力を借りて私もいろいろ試行錯誤しましたが、結局のところ上記のCNNモデルでは、accuracyは、向上しても肝心なVal_accuracyが向上しませんでした。

 

画像を前処理するためにPyTorchのTransformsライブラリを利用し、画像のリサイズや色調の調整、正規化などを行って
Vision Transformer (ViT)の使用および交差検証(K-Fold)を使用したモデル。

 

これが今回取組んだ中では汎用性の指標であるVal_accuracy(検証精度)が高かったです。
val_accuracy82%くらいでした。
で、結局この精度まで向上できたのもChatGPTのデバッグの力が背後にあるというオチが付きます。

 

 

他にも、いろいろやらないといけないことがあるので、そこまで深くは取り組めませんし
広く浅く取組んで概観したことしか伝えられなのが残念ですが

 

上記以外にも例えば、機械学習、とりわけLLMなどのファインチュ-ニングの分野は、
今後、さらに重要な分野になると思いましたので、

急遽、私的取り組みで音声応答チャットボッドを作製してみました。

 

で、これも結局、タスク分解し細分化し、段階的に取り組んだのとGPT3.5(4)に質問しまくって私自身も理解が進みレベルアップできたことで作ることができたというオチが付きます。

 

その経緯を含めて、なぜ非プログラマ-で独学独習でも自身のレベルが徐々に上がっていき出来てしまうのか?という理由など
ゆっくり動画というのを初めて作ってアップしました。

 

初めてアップしたのが、まさかの、ずんだもんということになってしまいました。

 

こういうのでインスパイアされる人が少しでもいて、pythonなどのプログラミングや
機械学習の敷居が下がり、ささやかでも、より多くの方に動機付けと機会が与えられるなら、それは早く知って取り組んだものの責任であり作った甲斐はあるというものです。

 

 



上記動画を見れば、GPT3.5やGPT-4を取り入れたらプログラミングなどのスキル獲得や機械学習を学ぶのに、十倍以上の時短にもなるというのが肌感覚で確認できると思います。

 

特に、動画後半の、なぜ非プログラマ-で独学でもレベルが上がっていき出来てしまうのか?というのは、
Pythonなどのプログラミングを学習する際も知らないで取り組むのと
知って系統的かつ実践的な学習をするのでは
学習効率および自身のレべルアップの速度が
天地雲泥になる
のではないかと。

 

例えば、動画内で紹介した単回帰のコ-ド依頼と質問に対して生成したコ-ドは以下の私的なリンクをPDF化し公開しておきましたので閲覧も出来ます。

 

Calif. Housing Price Regression

 

これをcolabなどに貼り付け実行すると以下のように描画されて結果が出てしまうんです。
(尤も、ある程度機械学習に詳しくなっていなければ、このプロンプト自体が作れませんけど、やってるうちにコ-ドが読めるようになり作って修正するのにも慣れていきます)

 

意味が分からなければ、コ-ドの意味や働きを質問したら、懇切丁寧に解説もしてくれます。

この一事だけでGPT4(または3.5)のコ−ド提案力と生成力の能力の凄さや
学習を加速させることを知らせるのに十分でしょう。

 

またGPTとチャットを重ねて学んで自身もレベルアップさせれば、
動画にあるように
カスタマイズされた音声チャットボットなどの機械学習分野のコ-ディングの知識やスキルも
GPTとの協業で短期間で修得出来る可能性があるよ!という私の主張も嘘ではないというのがわかるはず。

 

きっかけ(積極的な刺激)になれば、それだけでも作った甲斐はあると思うし
積極的刺激になればよいので、コ-ドの説明は不要でしょう。

 

 

ビジネスに貢献するためのAIをどうやって作るのか?言い換えれば人とAIの共創という限定された視点で観ても
単純に機械学習やコ-ディングについてGPT3.5などを介して学ぶ方法を早くから知って
プラスアルファで目的をもって決めて取り組むか、
それとも知らないで、難しいと思い込んでいるかで、その後の自身のレベルアップや成果(その後の展開)に大きな格差を生んでしまうのではないでしょうか?

 

尤も、アップした動画は、「 しょせん個人の趣味の域を出ないもの 」と考える方もいらっしゃるかもしれません。

 

確かにそのとおりです。

 

ですが、機械学習のスキルや知識をバックにし音声チャットボットを作製するという、
この小さなプロジェクトを達成するのですら様々な機械学習の背景知識やPCスキルの組み合わせが必要です。

 

私が初っ端で学んだ市販のテキストは簡単な解説や模範のコ-ドがあるからともかく、、
タイタニックの生存予測モデルで上位に入るための高精度化やcassavaの葉の疫学分類の判別率の高精度化は、
先の市販のテキストの総合問題などを解くよりは、発想力や創意工夫が必要で、より難しいです。

 

特定のキャラの音声チャットモデルを訓練し、相応のものを作るのは、
それらより、難易度が高く、いろんなPCスキルと組合わせる実務的な応用力が必要です。

 

よって、これらのモデルを作製出来る背景知識やスキルがあれば
このスキルや背景知識を少し応用すればLSTMやARIMAなどのモデルを用いて金融工学に適用できます。

 

例えば、簡単なモデル構築の例では、以下のような季節変動を考慮したビットコインの価格予測モデルの構築、検証などです。

 

 

 

あるいは化学工学などの分野ではRandom Forest等のモデルで化合物スクリーニング等への応用にも可能性があることを意味します。

 

なかでもファインチュ-ニングや転移学習のスキルは、今後非常に価値が出てくると私は考えています。

 

というのもchatGPT-3.5や4は、読者もご承知のとおり現在の技術としても非常に便利で革新的です。
そうなると、私たちの生活やビジネスをAIとの共創で、さらに便利にしようとする動きが当然、出てくるでしょう。

 

需要の高まりを受けて、この技術がさらに円熟化すると、様々な業界で特定のタスクやニーズに合わせて、GPT3.5などを様々な研究開発に応用したり、
音声チャットボット等のようにファインチュ-ニングしカスタマイズするスキルへのニ−ズが高まることは想像に難くないでしょう。

 

 

ただし導入に当たって最低限のpythonのプログラミングのスキルや背景の機械学習の基本知識やスキル、

 

とりわけ機械学習modelを駆使した高度な解析や探索、GPTのファインチューニングに関するスキル、ノウハウは欠かせません。

 

 

そうなってくると、GPTシリーズのうちオ-プンソースで公開されているものを使って
モデル構築の研究をしたりカスタマイズのスキルを、高めておくことは将来を見据えて
大きな意味では業務改革として、小さくは個人のビジネスのスキルとしても重要になってきます。

 

 

なかでも身近で用途が広い転移学習やファインチュ-ニングはニ-ズが高くなることが予想されます。

 

 

ただしGPT-3.5などを使ったモデルのカスタマイズ(ファインチューニング)は、
知っている方もいると思いますけどベ-ス料金に加えてAPI呼び出しに応じ追加料金もかかり有料です。
ですから無料で利用できるGPT-2の日本語モデルでのファインチューニングなどのスキルを磨き、機械モデルに学ばせる学習デ-タセットなどを研究すること。

 

これは、有料のGPT-3.5などをカスタマイズする際の実務等への応用可能性や
特化型モデルを作るのにデ-タセットをどう作成するかなど下地作り(試行錯誤)として、
十分な意義と可能性があると考えます。

 

※モデル構築や評価も大事なスキルですが、モデルに読み込ませ学習させるデ-タの前処理を含めた良質なデ-タセットを、どう作るかは、非常に大事なスキルになります。

 

またGPTのファインチューニング等に取り組むプロセスで、様々なPCスキルが、自然に底上げされますから。

 

 

 

 

ということで、いろんな意味で、とりわけ機械学習分野のスキルを磨くのに本当に、お薦めです。
     ↓  ↓  
    OPEN AI

 

GPTの出現が、あまりに革命的で機械学習のスキル習得の敷居が思いっきり下がったと思いますから
本当に、こういったスキルの習得が、ちょっとは難しいのか判断は難しい。
こういう記事も数カ月で陳腐化するかもしれないですけど。

 

 

chatGPTなどの生成系AIの出現でコ−ディングの技術スキルより
発想力や柔軟性、俯瞰力や統合力のほうが重要度が増したのかもしれません。
となると、なおさら心身統一法の出番ということになりますね。

 

実際、読者の方で口述書をよく研究し心身統一法をやっており一貫性の力をつけて続ける才能を渙発させた方の中には、
こういうスキルも、やる気がなくても、短期間で身につけてしまう方も結構いるでしょう。

 

 

 

なお、効率的に加速学習が可能になったのはchatGPTへの質問のし方も、私の場合は世間一般的な質問方法と違っていたことも関係するかもしれません。
pythonのプログラミングや機械学習を学ぶ過程で、GPT3.5(4)への質問のし方もレベルアップしたように思います。

 

 

今回、記事に書いたようにモチベ-ションが低い中で短期間で加速学習できたのは

 

chatGPTに求める結果を明確に示して段階的かつ具体的に質問をし、
自身もレベルアップすることで質問自体をレベルアップできたというのも、よかったのかもしれません。

 

以下も参考になるかもしれません。後日の記事になりますが

 

非エンジニアでノンプログラマ-(PYTHON初心者)でもコ-ディング出来た理由−ネタバレ(カラクリ)

 

 

機械学習のコ-ディングスキルを悪戦苦闘しながら身に着けるプロセスで、
どういう質問がAIにとって答えやすいか?そういうのも、なんとなく自然に身についた気がします。

 

なお機械学習分野については今後も心身統一法の実践研究と同様に様々なジャンルについて
私自身も少しずつスキルを磨くつもりではいます。

 

こういう分野に取り組む以前の自分が、できないかもと思っていたことが、( 出来ない中で )出来ることを押し広げることで、
( やっていくうちに )
気が付いたら出来ていたという体験というのは、結構嬉しいことでした。
Pythonプログラミングで機械学習を学ぶのに、ベ−シックの言語が英語なので
強制的に英語学習にもなり一石二鳥どころか三鳥、四鳥になった気がします。

 

私自身、大きな自信(励み)になりましたし、とても愉快な体験になりました。

 

それに、ちょっと背伸びをするくらいの心の負荷になるような新しいことに挑戦し
心が働く基盤である脳神経系基盤も肉体を扱うように適切に鍛えて使ってあげることで、
脳基盤も今まで使ってない領域が使われ脳に繋がった心を進化させることが出来るのではないでしょうか?

 

サイトや講座などの実践を通じて、読者の方々が、自己統御の力を高めて、様々なスキルを獲得し、それぞれの自己実現を目指し豊かにするための前向きなヒントを見つけていただければ幸いです。

 

PS

 

chatGptがpythonのプログラミング学習や機械学習を加速させたのは間違いないでしょう。

 

その性能も、当時より爆発的に進化しています。

 

よって2023年初頭の2月くらいからプラスアルファで取組んで独学で短期間にスキルの習得が出来たからとは言え、
これは、本当に、ほんのちょびっとは難しい事なのか?
心身統一法は、能力開発というのでも凄いよ!!の証明に信憑性が薄れるのが、残念ですけど、

 

少なくとも心身統一法の実践継続で向上を促す高次の意志力渙発や信念強化および潜在意識を積極化し
前向きにし向上を促す何らかの流れみたいなものの支援を受けていない、以前の自分だったら、

 

いくら実在意識でモチベ-ションを高めてやろうとしても

 

挑戦すらしてなかったか、挑戦しても、自覚されない奥座敷で負け癖がついてたから
すぐに諦めて投げ出していたかもしれません。

 

 

今回の事例でも詳細を述べたように

 

モチベ-ション低く、「こんなことしてどうする」。「できれば、やりたくない」。
みたいなひねくれた思いが実際湧いても
いつしか雑念が消え

 

気が付いたら、面白くなっていき割に短期間でスキルを身に着けていたという塩梅でした。

 

口述書の心身統一法で潜在意識を薫習する以前と以後を比べたら、以下のようになるでしょう。
これは、サイトでも書いてますけど。こういう簡潔なもので、比較的に表すことも出来ます。

 

 

潜在意識の薫習( ビフォア、アフタ−)

 

ささやかな体験ですが、こういう小さい事だって以前だったら、このような記事にも出来てなかったかもしれません。

 


※このあたりの詳しい説明については、心の積極性についての素朴な問い(潜在意識の秘密)に詳述しています。

 

 

PSのPS

 

90%くらいはchatGPTの力で、これが凄いのは間違いないですけど、
その一方で、過去の自分と比べて見ても、どう転んでも、やはり心身統一法が普通に凄いというのを今回の体験でも再認識する結果になったということも添えておくべきだと思いました。

 

なぜなら心身統一法の継続実践による発展軌道に乗せるための´続ける才能´を作っていくプロセスで、能力分野に限っても以下を可能にしたと考えられるからです。

 

1、視覚心身統一法や安定打坐法などを身近な仕事や生活に組み込んで積算実践することで見えない心と脳神経系のうち背外側前頭前皮質の機能が活性化し易くなった可能性がある。
それゆえモチベ-ションが低くても雑念整理がし易く、ゾ−ンに入りやすくなり、かつ記銘力が高まることで基本的能力の底上げがされたことが推定できるということ。
これによりpythonなどのプログラミング学習が私の場合は加速した(のかもしれません)
※前頭前野(背外側前頭前皮質)の活性化などは仮説にすぎませんが。

 

2、潜在意識を前向きかつ積極に高めて、自らの生命生存力に対する確信を少しずつ強めることで、無意識の力が高まったということ。
以前の自分なら、実在意識でモチベ-ションをバリバリに上げたって、すぐにしり込みし、諦めていたことが、
潜在意識が、ある程度薫習されてるので、根気が蘇っているベ-スがある中で、決意もさほどなくても、
出来る領域をじわじわ押し広げるやり方で恬淡と取り組むことで
雪だるまのように加速化が進み、
ある心理的一点で、ポ−ンと高い領域に遷移するという体験を経て出来ないことが出来てしまう可能率が高まった(としか思えないということ)

 

少なくとも靜かな信念が弱く、根も蘇ってなかったら、こういうのは、めんどくさすぎて、
自覚されない潜在意識が負け犬化していた以前だったら挑戦すらしてなかったかもしれない。

 

3、安定打坐などで空の境涯に入ることを続け向上発展に向け習慣化することで
気が付いたら否定や肯定からも超越した、ぐだぐだと考えない領域に、すっと入りやすくなったこと。
これにより、プログラミングのコ-ドを組み立てたりする際に高度な判断や方向付け(および統合)の力が増した(としか思えないということ)

 

よって、口述書を発見できるという、すごい運に恵まれ、
口述書経由で解説された心身統一法が普通に、単純に凄いのかもしれない

という、いつものオチになることは、強調しといたほうがよいと思うわけです。

 

 

あと、、ちゃぶ台返しみたいなことを最後に書いてしまいますけど、、(;^_^A

 

 

こういうのは、出来ないより、出来るにこしたことはない、、それは、多分そうでしょう。
新しいことに取組むと失敗も多くなるので謙虚にならざるを得なくなりますから、取り組むのは、相当に意義があると思います。

 

ですけど、

 

( 私自身も実際に手探りしながら取り組んで、サイト読者にも
将来を見据えて機械学習のことやプログラミング・スキルを修得することを薦めておきながら、
記事の最後に言う事じゃないかもしれないですけど、、 )

 

機械学習の高度なプログラミングが出来たからって、あるいは、それ以上のことが出来たって

 

結局STEP1にも述べたように、世間一般には成功してるとされ恵まれてると見える方も
感じるところの心の領域の調子が崩れて活かす力の受け入れ口が塞がって心を取り締まれず
当の本人の内面では、非常に苦しい、、みたいなことになる方は、結構な割合で、いらっしゃると思うからです。
(あまり世間一般には知られてない事ですけど)

 

これは、気をつけないと誰もが陥ることかもしれません。

 

よって

 

心身統一行法は、やはり最優先課題で研究し取り組む価値が、あるのではないかと。

 

あと、、断っておかないといけないのは、独学かつ短期間で機械学習の知識やプログラミングスキルを自身が獲得出来たのは、
ChatGPTや心身統一行法の積算実践以外にも、他のファクタ-も、ひょっとしたらあるのかもしれません。
ひょっとしたら質問テンプレ-トも新しい学びによかったかもしれないと、後で気付いて公開しておきましたけど。

 

私自身が心身統一法に恩義を感じ過ぎてて、そっちに原因を求めるバイアスが、かかり過ぎてるという偏り傾向の指摘( 批判 )は
正直、免れそうにはないですね。これは、反省しています。